
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2015,

Vol. 8, No. (3):
Pgs. 255-269

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Approach To Solving K-sat Problem Based On
Reduction Thereof to the Covering Problem

S. V. Listrovoy1 and A. V. Sidorenko2

1Doctor of Engineering Science, professor in the Ukrainian State
Academy of Railway Transport (61050, 7, Feuerbach square, Kharkov, Ukraine.

2Principal Software Engineer of “Stalenergo” Scientific-Production Enterprise
(61105, 9, Fedorenko St., Kharkov, Ukraine.

(Received: August 16, 2015; Accepted: November 28, 2015)

Abstract

	 We propose an exact polynomial-time algorithm for solving SAT the problem.

Key words: SAT problem, polynomial reducibility.

Introduction

	 SAT-problem is important in systems of
evidence automatic verification, where formula
is a set of clauses, which mean disjunction of a
certain amount of literals – variables Õ and Õ . This
problem has a great importance upon determination
of satisfiability of CIRCUIT-SAT schemes (circuit-
satisfiability problem) and in pattern recognition
problems. The international annual conference
(The International Conference on Theory and
Applications of Satisfiability Testing) that has been
held every year for more than ten years, as well
as a (Journal on Satisfiability, Boolean Modeling
and Computation) are devoted to this problem.
An important place in the study of SAT-problem

takes design of programs to address them; such
programs are called SAT-solvers. Modern SAT-
solvers are able to quickly solve many problems
that were considered not solved a few years ago.
There are many exponential algorithms of its solving
and heuristic approaches of polynomial complexity.
Among them one should mention the Monien and
Shpikermayer algorithm, 1985, in which a simple
search is used for solving 3-SAT problem: alternate
substitution of each variable with 1 or 0 is tried and
then problem of a smaller size is recursively solved;
it has temporal complexity Î(1,84n) and algorithm for
problem of propositional satisfiability of formulas
in conjunctive normal form with the complexity of
Î(1,074n), obtained by Hirsch in 2000. In general,
there are two main types of algorithms for solving

256 Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

SAT problems: local search algorithms that start
with a certain set of values (though, it does not
satisfy all the formula), and then modify it trying
to consistently get closer to performed set, and
so-called DPLL-algorithms (by names of inventors:
Davis, Putnam, Logemann, Loveland; description
of basic principles of this method dates back to
1968), which traverse a tree of all possible sets
and perform depth-first search. The purpose of
this paper is to develop efficient exact algorithm
for solving 3-SAT-problem and an arbitrary k-SAT-
problem of polynomial complexity.

Formalization of SAT problem and its solution
	 Let’s consider Boolean function

),..,,(21 nxxxf in conjunctive form

),...(...)...(),..,,(2111211
212121

mnmmn
nnn xxxxxxxxxf ssssss ∨∨∨∧∧∨∨∨=

where





=−
=−

=
0
1,

s
ss

ïðèõ
ïðèx

x
i

i
i

.

	 Operations Ú, Ù are Boolean and simulate
simple logic statements: Ú– “OR”; Ù– “AND”. For
any binary set),..,,(21 nxxxõ = the function
takes one of two possible values: one or zero. The
problem “satisfiability” is the answer to the question:
whether there is a set of variables),..,,(21 nxxxõ =

, reversing function f into one.

	 As shown in [1] SAT problem can be
considered as covering problem, for this let’s
construct by Boolean function a Boolean matrix
B in which columns correspond to variables
()nXÕÕ ,...,, 21 and ()nXÕÕ ,...,, 21 , and rows
correspond to disjunctions of the Boolean function.
In general, the number of columns in matrix Â is
equal to 2n, and the number of rows is equal to the
number of disjunctions m in the Boolean function.

	 For example, for Boolean function

	 ...(1)

	 Let’s numerate disjunctions of the Boolean
function, see Table 1.

Numeration of disjunctions

Table 1:

Then, matrix B will have the form (2)

0
0
1
1
0

1
0
0
1
0

0
1
0
1
0

0
1
0
0
1

0
0
0
0
1

1
0
1
0
1

5
4
3
2
1

321321 XXXXXX

B =

	 ...(2)
	 Columns corresponding to the variables

iX è iX in the matrix will be called inverse. If
in matrix B there is a covering of rows by units
belonging to non-inverse column, it means that f
function is satisfiable, if there is no such covering,
it is unsatisfiable. Let’s denote variables by , then
matrix Â, for the Boolean function (1), takes the
form

0
0
1
1
0

1
0
0
1
0

0
1
0
1
0

0
1
0
0
1

0
0
0
0
1

1
0
1
0
1

5
4
3
2
1

321321 ZZZXXX

B = ,

	 ...(3)

Where if, then =0 and if , then =1
	 As shown in [1], the problem of minimum
coverage for any matrix B defined by some Boolean
function

)...)...(...
)(...(

hdqt

rskbl

XXXX
XXXXXf

∨∨∨∨∨
∨∨∨∨=

...(4)

	 Can be considered as a problem of

257Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

finding a minimum set of variables {Xi = 1}, where
the Boolean function (1) is satisfiable. That can be
written in the following form

}1{min =ii
X

 	 ...(5)

upon constraints

1)......(
)...)(...(

=∨∨∨
∨∨∨∨∨∨

hdq

trskbl

XXX
XXXXXX

...(6)

If we go to the dual Boolean function we’ll obtain

}0{min =ii
X

	
...(7)

0............ =∨∨∨ hdqtrskbl XXXXXXXXX
...(8)

	 From (7-8) it follows that the problem of
the least coverage can be considered non-linear
Boolean programming problem that means finding
of the smallest number of variables turning into zero
the left side of the constraint (8). If we are talking
about the existence of at least one covering, then
it is necessary to find out whether there is at least
one set of variables turning into zero the left side
of the constraint (8). For the matrix B, defined by
correlation (3), condition for the existence of at least
one covering will have the form

0............ =∨∨∨ hdqtrskbl ZZXXZXXZX
 ,

...(9)
	 upon constraints

if 1=iX , then
iZ =0 and

if 0=iX , then
iZ =1	 ...(10)

	 Thus, to establish the satisfiability of the
Boolean function, we need to show the presence of
at least one covering of rows by units in the matrix
B, defining a given Boolean function, defined by
correlation (3) that satisfies condition (10). For this,
it is necessary to solve non-linear Boolean equation
(9) and therewith, solution of this equation should
satisfy condition (10). If we denote an arbitrary

summand by , and the number of summands by
m, then the problem (9-10) can be written as

∑
=

=
m

i
iS

1
0

	 ...(11)

	 upon constraints if 1=iX , then iZ =0 and
if 0=iX ,then iZ =1	 ...(12)

	 In order to solve problems (11-12),
variables of the Boolean function

s
ix , taking

values iX , and iZ we’ll characterize by weight
characteristics

x
ih and

z
ih showing the frequency

of appearance of variables and in summands of
equation (11).

	 In solving the problem (11-12) for the
conversion of some Boolean function we in mean
a change in the function by substituting in it pairs,
,= 0 or ,= 1, and since as a result of substitution
or = 1 appeared clauses with fewer variables, We
will produce the absorption type of operation. If the
result of substituting in it pairs, ,= 0 or = 1, it follows
that the equality, t.e. ravening (11) takes the form 1
= 0, then we say that there was a contradiction and
the function “not feasible” . If the conversion process
appears clauses, consisting of one variable, these
variables are assumed to be zero, and enter them
in the decision.

	 The basic idea of the solution of equation
(11) is the choice of a clauses in the original in the
original Boolean function F, and is it possible to
reset all the other terms in (11) due to the fact that
we assume to be zero in turn variables belonging to
the selected clauses in this form some intermediate
functions in which, too, will allocate clauses and try
to reset all the terms in these functions on the basis
of a clause in the selection of one of these functions
and setting variables in the selected clauses of turn
zero. This process continues until we get the identity
0=0 or , proceed to the contradiction 1= 0. In the first
case of the function is feasible, and the second is
not feasible. In general, the whole set of functions
formed on the basis of one clauses selected in the
initial Boolean function F can be represented as a
tree, see the following. Figure 1.

258Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

Clauses)(riS with 5 variables)(rjx

k

k(k-1)

k(k-1)(k-2)

k(k-1)(k-2)(k-3)

r=0

r=1

r=2

r=3

Fig.1. Tree forming Boolean functions Fr

Clauses with 4 variables

Clauses with 3 variables

Clauses with 2 variables

The number of
vertices in the tree

 r-level

 r-уровне

Fig. 1: Tree forming Boolean functions Fr

Table 2:

Table 3:

	 In Figure 1. shows a tree of all rF , who
will have to build for the solution of «k-SAT» for k
= 5. To construct the procedure of forming wood
introduce the following notation: - clause in the

	 r- level in the tree; - the number of the
variable in the clauses on the r- level in the tree; -
is a variable in a number of clauses. In view of the
above notation, consider the following procedure
A, the definition of the solution of (11) with the
conditions (12) for the solution of «k-SAT» problem,
i.e., the feasibility of a task in which each contain
clauses on k-variables.

Procedure A
Step 1. Select the equation (11) a clause with a
minimum number of variables and with the greatest
total weight characteristics, choose a variable in it
with the highest frequency (this corresponds to the
zero level r = 0) and move on to the next step.

Step 2. Assign a variable selected clauses zero,
and convert a Boolean function to function and
proceed to the next step

Step 3. Check function, “not feasible” and whether
there is a disjoint variables that are not considered
to be zero (ie. check of the conversion process

259Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

Fig. 2: The block diagram of an
implementation procedure A

does not result in a contradiction of the form) If yes,
proceed to step 2, otherwise the next step.

Step 4: Check the function of “not feasible”, and
whether there is a disjoint variables that were

assumed to be zero (i.e. Check the conversion
process functions to does not lead to a contradiction
of the form) If yes, proceed to Step 2, otherwise the
case in the next step.

Step 5: Check the function “feasible” or not (i.e.
identity is performed 0=0 in equation (11)), and if
so then the algorithm terminates because of the
function is feasible, otherwise the next step.

Step 6: Check the function of “not feasible”, that is
a contradiction of the form when trying to function
in zero if the function is turned to zero and thus
no contradiction, then go to the next step if the
controversy arose, that is, the function “not feasible”,
then go to step 7.

Step 7: Go to the next level to find this clause
with a minimum number of variables and with the
greatest total weight characteristics, select it in the
variablewith the highest frequencyin the Boolean
functionand go to step2.

Step 8: Checking were tested at zero (r = 0), all
variables on the ability to reset clauses in equation
(11), if yes, then the algorithm terminates, since the
function “not feasible” otherwise the next step.
Step 8. Back to the previous (r-1) level branching
and go to step 2.

	 The block diagram of this algorithm is
presented in Fig.2. Let’s show that procedure
A, oriented at solving of k-SAT problem, allows
determination for polynomial time whether there is
a set of variables in equation (11) allowing turning
this equation into an identity upon fulfillment of
condition (12). If in equation (11) we take arbitrary
summand = , it is clear that in order to make =0 and
fulfill condition (12) one of k pairs of equalities =0 ,
=1; =0, =1; …=0, =1 should be fulfilled, i.e. in the set
of variables of problem (11-12) solution there is one
of these pairs and procedure A alternately checks
which of these pairs belong to the solution. When
we choose a clause in original Boolean function F
procedure A does not analyze the entire original
Boolean function F, and only that part of clauses
which crosses the variables selected clauses.
Sequences clauses of Boolean functions, which do
not intersect the variables included in the clauses
that make up the sequence, they will be referred to

260Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

Table 4:

Table 5:

independent sequences of clauses. It is clear that if
a Boolean function is the number of variables is 2n,
and the number of variables in each clause is k, the
maximum number of such independent sequences
cannot exceed the value,

k
n2

i.e. in the worst based on the proposed
procedure in the original Boolean function need to
zero no more such sequences and therefore have to
analyze no more trees. So appreciate the complexity
of the analysis of one such tree. In accordance with
the constructed tree, the number of functions that
will have to be converted equal to the total number
of nodes at all levels of the analyzed tree.

	 As can be seen from Fig.1.the number of
nodes at level zero will be equal to k at the first level
is k(k-1) at the third level k(k-1)(k-2) and etc. And
so, the number of nodes at level zero is equal to k ,
the second the number of vertices does not exceed
,will not exceed the third and the last level will not
exceed . Consider the amount of clear that it cannot
exceed the value. For example, for the task “3-SAT”
in the tree will have to be converted in the worst
case k+ k(k-1)+ k(k-1)(k-2)=15 =3+3(3-1)+3(3-1)
(3-2)=15 functions. Given that the solution to “k-SAT”
problem have to analyze trees, in the worst case will
have to convert functions. In the case of a decision
“3-SAT” problem, this number will not exceed the
amount. For the analysis of the original equations

and arbitrary Boolean functions in accordance
with the proposed À procedure u need different
operations. The number u is determined 2mn a
comparison operation to determine the frequency
of occurrence of each variable in the selected term
and other terms plus m’”k operations of addition
to determine the total value weight of each term in
equation (11) and plus operations comparison of the
maximum element in the array of m elements, i.e. . In
the worst case at each step of the procedure A will
be reset to zero only one summand i.e. in equation
(11) after the first step will remain m-1 summand
further m-2, m-3,...,1 summands ,i.e. zeroing all
components of the procedures A in the worst case
will require completion operations.

	 Thus, time complexity of work of the
proposed procedure A does not exceed

))
2
log1(

2())log2(

)1(()
2

)1(2(

2

123
2

1
1

n
mk

knmOmmmkmn

mmnkOumnmkO

k

k
k

+
+

≈++

+=
+

−

−
−

	 ...(13)

	 In the case of a decision “3-SAT” problem
the number of elementary operations in the worst
case may not exceed

≈
+

++))
2
log31()1(10(222

n
mnmmO

261Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

Table 6:

Table 7:

))
2
log31(10(223

n
mnmO +

+
 	 ...(14)

	 It is known that “k-SAT” problem can be
reduced to “3-SAT” problem in polynomial time, in
particular in [9] it is shown that if the clause contains
more than three literals

kS ki),...(21 lll +++= >3	 ...(15)

	 it can be replaced by (k-2) clause

)(...)(

))((

13342

231121

kkk

i

xxx

xxxS

lll

lll

++⋅⋅++

++++=

−− ,
...(16)

	 where new variables, with this new set of
clauses satisfied if and only if the following clause.
Thus the transition from “k-SAT” problem to a
“3-SAT” each clause “k-SAT” problem increases the
number of variables in Boolean functions on (k-3),
and the number of clauses are restricted to (k-2)
clause, and therefore, when the number of variables
and clause in a new task will be respectively equal

mkmkmnn)2());3((// −=−+= .

	 Substituting and as new values n and m
in (14) we obtain an estimate of difficulty with this
approach to the solution of «k-SAT» task using the
procedure A

))
))3((2

log)2(log31(

))3(()2(10(

22

233

−+
+−+

+

−+−

kmn
mk

kmnmkO

	
...(17)

	 Proposed procedure for solving «k-SAT»
problem is formally polynomial algorithm but with a
high degree of the polynomial (13) and consequently
implemented in exponential time, with the solution
of the «3-SAT» A procedure performs tasks in
polynomial time. Thus, the transformation «k-SAT»
problem in polynomial time in the «3-SAT» problem
leads to an algorithm of polynomial complexity.

	 In solving «k-SAT» task using the
procedure _ without reducing it to “3-SAT» problem
we have exponential complexity of the algorithm and
the choice at each step of the procedure A disjuncts
with the minimum number of variables and with the
greatest total weight characteristics can significantly
to reduce the average time of the algorithm, by
resetting the maximum number of terms in each
step of the procedure. Thus, the procedure A is a

262 Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

Table 8:

m = 500; k = 3
n	 100	 110	 120	 130	 140	 150
Number of elementary operations	 1.06·108	 7.2·108	 8.6·109	 4.2·108	 63,209	 52,096
	 0.2	 0.22	 0.24	 0.26	 0.28	 0.3
Satisfiability	 -	 -	 -	 +	 +	 +
Minimum time of solution – 5.06 ms				 Maximum time of solution – 793,934 ms

Table 9:

m = 500; k = 3
n	 400	 800	 1200	 1600	 2000	 2400
Number of elementary operations	 286987	 106	 2.24·106	 4·106	 6.2·106	 8.9·106
	 1.25	 0.625	 0.416	 0.313	 0.25	 0.208
Satisfiability	 -	 -	 -	 +	 +	 +
Minimum time of solution - 36.5 ms				 Maximum time of solution - 849 ms

Table 10:

m = 90; k = 3
m	 100	 200	 300	 400	 500	 600
Number of elementary operations	 16029	 26994	 37413	 4.39·107	 2.42·107	 1.86·107
	 0.90	 0.4	 0.3	 0.23	 0.18	 0.15
Satisfiability	 +	 +	 +	 +	 -	 -
Minimum time of solution - 2.15 ms				 Maximum time of solution - 38,910 ms

Table 11:

m = 500; n = 90, ? = 18
k	 3	 10	 20	 30	 40	 50
Number of elementary operations	 2.42·107	 60,807	 48,555	 55,488	 64,268	 74,508
	 0.2	 0.22	 0.24	 0.26	 0.28	 0.3
Satisfiability	 -	 +	 +	 +	 +	 +
Minimum time of solution - 7.57 ms				 Maximum time of solution - 160 ms

complete listing of options, may be reset clauses
in the case of feasibility reset function occurs in
polynomial time, and in the case of “not feasible”
function after attempts to reset either the first or the
m clauses it turns out that it can not reset and still
going strong screening the number of functions in
the tree that must be analyzed and this leads to the
fact that the average procedure A decides «k-SAT»
problem in polynomial time.

	 Let’s consider examples of work of the
procedure A, upon determination of satisfiability of

Boolean functions. Let it be required to determine
satisfiability of the following Boolean function
with four variables and thirteen disjunctions while
we assume that the + sign is a sign of logical
addition.
f(x) = (x> 1+x> 0+x> 3)(x1+x0+x2)(x> 0+x> 3+x> 2)
(x> 3+x> 2+x1)(x1+x0+x3)(x> 1+x> 0+x2) (x> 3+x0+x2)
(x> 1+x> 2+x0)(x> 0+ x3+ x2)(x> 2+ x1+x0)(x> 0+x>

3+x1)(x> 3+x1+x2)(x> 0+x> 2+x3)	 ...(18)

Let’s write initial equation

263Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

Table 12:

m = 10,000; k = 3
n	 100	 200	 300	 400	 500	 5,000
Number of elementary operations	 324,459	 1.25·106	 4.89·106	 9.5·107	 2.36·109	 6.1·107
	 0.2	 0.22	 0.24	 0.26	 0.28	 0.3
Satisfiability	 -	 -	 -	 +	 +	 +
Minimum time of solution - 44 ms				 Maximum time of solution - 819,261 ms

Table 13:

Test 	 Number of 	 Number 	 Average 	 Average 	 Minimum 	 Maximum
name	 variables	 of 	 number 	 time 	 time of 	 time of
		 disjunctions	 of fulfilled 	 of 	 solution	 solution
			 operations 	 solution 	 in ms	 in ms
			 upon 	 in ms
			 solution

CBS_k3_n100_m403_b0	 100	 403	 51·106	 4,578	 2.28	 77,843
………………………….
CBS_k3_n100_m403_b900

Z1Z0Z3 + x1x0x2 + Z0Z3Z2 + Z3 Z2x1 + x1x0x3 +
Z1Z0x2+ Z3x0x2 + Z1Z2x0 + Z0x3x2 + Z2x1x0 + Z0Z3x1 +
Z3x1x2 + Z0Z2x3=0; 	
				 ...(19)
	 We determine frequencies of appearance
of variables in each summand, see table 2

	 Let’s choose summand with Z0Z3x1
maximum value of sum of frequencies

x
ih equal

to 6+6+5=17 and assume Z0=0; x0=1, thus initial
equation (19) will take the following form

x1x2 + Z3 Z2x1 + x1x3 + Z3x2 +
Z1Z2 + Z2x1 + Z3x1x2=0	 ...(20)

	 we perform absorption, here x1x2 absorb
summand Z3x1x2, and summands Z2x1 and Z3x2
absorb accordingly summands Z3 Z2x1 and Z3x1x2,
thus equation (20) will take the following form

1=rF = x1x2 + x1x3 + Z3x2 + Z1Z2 + Z2x1 =0 	
...(21)

	 Check the function is reversed to zero,
i.e. “doable” or not. In this case, the function
is not converted to zero, and in the process of
transformation functions in contradictions have
arisen, therefore, proceed on the next r+1 level.

	 Again we determine frequencies of
appearance of variables in each summand, see
table 3.

	 Further, among summands containing the
minimum number of variables, such summands
are x1x2; x1x3; Z3x2; Z1Z2; Z2x1, we choose the
summand with the highest weight characteristics ð.
In accordance with Table 3, weight characteristics
of these summands are, respectively, (4, 4, 2, 3, 5),
so we choose the summand Z2x1. There variable
with the greatest frequency equal to 3 is variable
x1, so we assume x1=0; Z1=1. Thus, equation (21)
will take the following form

2=rF =Z3x2 + Z2=0	 ...(22)

	 Absorption in (22) cannot be done, but
there appeared the summand with one variable,
therefore, we believe Z2=0; x2=1 and therefore,
equation (22) will take the following form

Z3=0	 ...(23)

	 Thus, a set of variables Z0=0; x1=0; Z2=0;
Z3=0 or x> 0 x1 x> 2 x> 3 draws equation (19) into the

264 Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

identity and hence is a performing set of variables
for the Boolean function (18). Let’s also consider the
process of work of procedure A in the case when
Boolean function is not satisfiable. Let function be
set as follows
F(x)=(x0+x1+x> 2)(x> 3+x> 0+x2)(x0+x> 3+x2)(x1+x>

2+x> 0)(x> 0+x> 1+x2)(x3+x1+x> 0)(x3+x0+x> 2)
(x0+x> 2+ x> 1)(x3+x0+x2)(x3+x0+x1)(x3+x> 2+x> 0)
(x> 2+x> 3+x> 1)(x1+x> 2+x> 3)	 ...(24)

Let’s write initial equation

0=rF
=x0x1Z2+Z3Z0x2+x0Z3x2+x1Z2Z0+Z0Z1x2+x3x1Z0

+x3x0Z2+x0Z2Z1+x3x0x2+x3x0x1+x3Z2Z0+Z2Z3Z1+x1Z2

Z3=0	 ...(25)

	 Since we solve 3-SAT problem we have
k = 3 and before the start of work of procedure
A variable ñ=1. We determine frequency

x
ih of

appearance of variables in each summand (25),
see table 4.

	 We choose summand with
*
1S = x0x1Z2 with

maximum value of sum of frequencies
x
ih equal to

6+5+6=17, choose variable with maximum value
of , this is x0 and assume; x0=0, Z0=1, thus initial
equation (25) will take the following form

Z3x2+x1Z2+Z1x2+x3x1+x3Z2+Z2Z3Z1+x1Z2Z3=0 	
...(26)

	 In (26) summand x1Z2 absorb summand
x1Z2Z3 and equation (26) will take the following
form

1=rF = Z3x2+x1Z2+Z1x2+x3x1+x3Z2+Z2Z3Z1=0 	
...(27)

	 The function
1=rF becomes zero, and

when this controversy arose therefore determined

the frequency x
ih of occurrence of variables in each

clause (27) see table 5.

	 In (26) summand with maximum total value
of frequency is x1Z2 with total weight equal to 5 and
x3Z2, there we choose variable Z2 with maximum
weight 3. Further we assume Z2=0, x2=1, as a result
(27) will take the following form

Z3+Z1+x3x1=0	 ...(28)

	 As in (28) acquisitions cannot be held, and
the terms containing one variable, we assume Z3=0,
x3=1 and Z1=0, x1=1, and obtain 1=0 i.e. there is a
contradiction, so return to the previous level 1=rF
and move on to try to reset clause x1Z2 based on
the variable x1, for in this we assume x1 =0, Z1=1 in
(28) will receive

2=rF = Z3x2+ x2+x3Z2+Z2Z3=0	 ...(29)

	 In (29) x2 absorbs summand Z3x2 and
we obtain the following equation

3=rF = x2+x1Z2+Z2Z1+x1Z2=0	 ...(30)

	 As in (30) appeared, the terms containing
one variable, we assume x2 =0,Z2=1 in (30) then
we get x1+Z1=0, i.e., there was a contradiction,
i.e. reset clause x1Z2 by variables x1 and Z2 without
any contradiction is impossible, so back to zero
and check whether all variables are checked for
the possibility of exempting clause x0x1Z2 . In this
case, not tested variables remained the variables
x1 and Z2 and thus the variable Z2 has a greater
frequency of occurrence in the clause than x1, so
we assume Z2=0, x2=1 in this case equation (25)
takes the form

1=rF = Z3Z0+x0Z3+Z0Z1+x3x1Z0+x3x0+x3x0x1=0	
...(31)

	 In (31) summand x3x0 absorb summand
x3x0x1, and we obtain

2=rF =Z3Z0+x0Z3+Z0Z1+x3x1Z0+x3x0=0 	
...(32)

	 The function becomes zero, and when
this controversy arose therefore determined the
frequency of occurrence of variables in each clause
(32) see table 6.

	 Among the terms with two variables, select
the term with the maximum aggregate rate, this term
is a term, this term Z3Z0 with a weight characteristic
of 5, select it in the variable Z0 with the largest
weight to 4 and assume x0 = 1 and Z0 = 0, at the
same time (32) will have the following form

Z3+x3=0	 ...(33)

265Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

	 i.e. there was a contradiction therefore
return to the previous level to zero clause Z3Z0
based variable Z3, for this purpose (32) believe x3

= 1, Z3 = 0, we obtain

1=rF =Z0Z1+x1Z0+x0=0	 ...(34)

	 In (34) there was a term consisting of one
variable, so assume x0 = 0 and Z0 = 1, and we obtain
the Z1 + x1 = 0, i. e. there was a contradiction. Next,
check whether all the variables at zero were used to
clear the clause x0x1Z2. In this case, we are left with
no proven only one variable x1, therefore believe x1
= 0, Z1 = 1, the equation (25) becomes

1=rF =Z3Z0x2+x0Z3x2+Z0x2+x3x0Z2+x0Z2+x3x0x2+x3

Z2Z0+Z2Z3=0	 ...(35)

	 After absorption by summand x0Z2 of
summand Z3Z0x2 and x3x0Z2 we obtain

1=rF =x0Z3x2+Z0x2+x0Z2+x3x0x2+x3Z2Z0+Z2Z3=0 	
...(36)

	 The function does not vanish, and thus no
contradiction, therefore, determines the frequency
of appearance of the variables in each of clauses
(36) cm. Table 7.

	 Among the clauses in the two variables
(36) Select clause to the maximum aggregate rate,
this term is a term with a weight x0Z2 characteristic
of 6, select it with the variable x0 frequency of
occurrence in other clauses of (36) equal to 3
and suppose x0 = 0 and Z0 = 1, and (36) takes the
form
Z3x2+x2+x3Z2+Z2Z3=0	 ...(37)

	 In (37) x2 absorb Z3x2 and we obtain
x2+x3Z2+Z2Z3=0	 ...(38)

	 In (38) there was a term with one variable
x2, so expect x2 = 0 and Z2 = 1 in this case we obtain
x3 + Z3 = 0 i.e., a contradiction, so we return to the
r-1 level i.e. go to the function defined by (36) and
proceed to attempt to reset the clause x0Z2 based
variable Z2, for this purpose (36) believe Z2 = 0,
x2 = 1, we get Z3Z0 + x0Z3 + Z0 + x3x0 = 0, having
absorption get x0Z3 + Z0 + x3x0 = 0, where there
was a term with one variable Z0, therefore believe
Z0 = 0, x0 = 1 and obtain Z3 + x3 = 0 i.e., formed a

contradiction therefore return to the r-1 level in the
case of zero and check instill variables were used
to clear the clause x0x1Z2 in this case it was the
last variable, and hence the procedure terminates
since assuming zero variables in clauses x0x1Z2 pay
equation (25) into an identity and therefore can not
function (24) is not feasible.

	 It should be noted that these estimates
of time complexity of the procedure A, for the
worst case, are pretty rough estimate from above
because when it is obtained it was assumed that
when assigning 0=lX and lZ =1 at each step
only one summand is reset to zero, but in fact

x
lh

summands are reset to zero and therefore it is of
interest to obtain an estimate of the average work of
the procedure A. In the experiment, 2n variables iX

and iZ posted by disjunctions according to uniform
distribution law. Results of experimental studies
were obtained with a confidence probability of
0.95, while for the average value of the number
of elementary operations performed by procedure
A at each point from 50 to 70 Boolean functions
of studied dimension were generated. Upon
experiment the number of disjunctions m ranged
from 100 to 10,000, and the number of variables n
changed from 90 to 2400, experimental results are
shown in tables (8-12). Period of work of procedure
À is given in milliseconds.

	 Tables (8-12) show that the largest number
of operations is made by the procedure at ratios

	 m
n

=a
 close to 0.24, while for a

uniform law of distribution of variables iX
 and

iX by disjunctions at <0.24 Boolean functions
are generally not satisfiable, and at> 0.24 Boolean
functions become satisfiable. Sign (+) in tables
means that functions are satisfiable, and sign (-)
indicates non-satisfiability of Boolean functions.
When á is close to 0.24 probability of occurrence
of satisfiable and unsatisfiable Boolean functions
becomes the same and thus the number of
operations fulfilled by procedure A is increased.
Thus, in case where Boolean function contained
number of disjunctions m = 800 and number of
variables n = 200, i.e. á = 0.25, the average number
of solution was equal to 1,96 1011, at the upper value
equal to 1,6’”1014, and the average time of solution
was 4.9 hours. With increasing of k, see. Table 10,

266 Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

where the summand
n

mk
2
log2+ in (17) is

significantly less than unity, there is a decrease of
time complexity of the procedure’s work, due to the
increased number of zeroed summands at each
step of the procedure’s work. However, upon further

increase of the summand
n

mk
2
log2+ ,

when it becomes significantly greater than unity,
there is a further increase in the number of
elementary operations fulfilled by procedure A. In
order to test the developed algorithm we used 900
test of specialized library SAT Live [12] containing
403 disjunctions and 100 variables with the value of
parameter á = 0.248 generated by pseudo-random
filling of disjunctions. Test results are shown in
Table 13

	 Algorithm testing was carried out on a
computer ASER with Intel Pentium processor
T4400, 2.2Ghz, 3GB Memory.

Summary
	 Since the issue of existence of an exact
polynomial algorithm for solving SAT problem is
closely connected with the issue of the relationship
of classes P and NP, let’s consider it in more
detail.

	 Today, seven mathematical problems
included in the list of millennium tasks are known,
one of them is the problem of the relationship of
classes P and NP. The issue of the relationship
of classes P and NP is now considered one of the
main open issues of modern mathematics and
theoretical cybernetics. The founders of this problem
are Stephen Arthur Cook, Professor from University
of Toronto and a Turing Award winner, and Professor
Leonid Levin. Cook’s works introduced the concept
of NP-complete problems and proved that the
problem of “satisfiability” also known as the SAT-
problem is universal NP-complete problem. Further
development of the theory of NP-complete problems
was made by a professor at Harvard University,
Richard Manning Karp. In recent times, there
have appeared papers of Indian mathematician,
Vinet Deolalikar, and article “On the Relationship
between Classes P and NP” written by the Ukrainian

professor Anatoly D. Plotnikov in Journal of
Computer Science 8 (7): 1036-1040, 2012. These
papers prove the divergence of these classes. And
the paper of Russian professor A. V. Panyukov
proves that P = NP. Let’s show the incorrectness
of these efforts of evidence on the basis of results
already obtained by the authors in [1, 2, 3] and
results obtained in papers of Lavrov and Zykov [7,
8, 9], as papers [1, 2] show that SAT-problem is not
universal.

	 It should be noted that the class of NP-
complete problems is based on the concept of
universal problem. All problems belonging to the
class of NP-complete should be universal and
polynomially reducible to each other. Therefore, if
polynomial algorithm is received for solving some
problem I belonging to the class of NP-complete,
then in accordance with the Cook’s theorem
[4] there should be polynomial solvability of all
problems belonging to the class of NP-complete.
In [4] Cook argues that the problem “satisfiability”
is NP-complete. Once one NP-complete problem
has become known, the process of proof of NP-
completeness of the problem A is simplified. In order
to prove the NP-completeness of the problem ÀÎNP
it is enough to show that any of known NP-complete
problems À/ can be reduced to A, since the property
of polynomial reducibility is transitive, i.e. if the
problem A is converted to the problem B during the
polynomial time, and if B is converted to C during the
polynomial time, then A will be converted to C during
the polynomial time. First this scheme was used
to prove NP-completeness of six main problems:
“three-dimensional combination”; “partition”; “vertex
cover”, “Hamiltonian cycle; “clique”. Since these
were the first problems introduced in the class of
NP-complete problems after “satisfiability” problem,
the proof of their NP-completeness was reduced
to introduction of rule Ï, based on which using
some arbitrary problem of “satisfiability” Yy∈
there was built structure S, with í property, if and
only if ã possesses the value truly. For example,
for the problem of “vertex cover” graph G was as
the structure S, and í property laid in the fact that
graph G has a vertex cover with the number of
elements not more than K, if and only if the following
set of disjunctions },...,,{ 21 mcññÑ = , defining
an arbitrary individual “3-satisfiability” problem, is
satisfiable. In general, the problem of “satisfiability”

267Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

is a set of Y individual problems defined in various
ways of defining logic function. It should be noted
that when proving NP-completeness of all six
listed problems first there was selected an arbitrary
individual task Yó∈ and it is used for construction
during a polynominal time of graph G, having
a structure interesting for us with necessary í
property, only if the logic function corresponding
to a given individual problem, possesses the value
truly. Since graph G can be arbitrary, we solve some
individual problem Zz ∈ , where Z-set of problems
generated by using various types of graphs G.

	 Upon solving any NP-complete problem
of graph theory there is an inverse problem: an
arbitrary graph G is given, and it is required to set
whether this graph G has structure with v property
or not.

	 The fo l lowing issues ar ise: what
individual task (y) from a set of individual problems
“satisfiability” Y corresponds to the problem Zz∈
generated by graph G, and whether there is inverse
for all problems Z or not, and, if so, how it can be
constructed according to the original graph and
whether such construction is a polynomial or not?

	 It should be noted that Cook’s evidence of
universality of problem “satisfiability” was present a
priori and it was not clear whether there is at least
one NP-complete problem or not. However, [2, 3, 4]
show that “satisfiability” problem cannot claim to be
a universal problem, i.e. NP-complete problem. As
follows from [2, 3, 4] set of objects that are described
by unsatisfiable Boolean functions in an exponential
number of times are greater than the number of
objects that are described by satisfiable Boolean
functions, and properties of polynomial reducibility
are by default extended to objects described by
unsatisfiable Boolean functions. It was shown in
[2, 3] in the vertex cover in graphs. According to [2,
3] it is possible to construct an exponential set of
graphs the set of disjunctions , defining an arbitrary
individual problem, of which is unsatisfiable on
any set of variables, and hence reduction of the
problem of vertex cover to the SAT-problem for
these graphs is impossible. It is easy to show that
this fact happens for the problem of Hamiltonian
cycle in graphs, as well as any other problem in the

theory of graphs included in the list of NP-complete
problems.

	 Initially, in the theory of NP-complete
problems, there was laid an error associated with
the fact that upon proving of NP-completeness the
concept of individual problem does not take into
account the topology of studied object. Description
of any object is defined by some basic subset of
elements describing this object and ratio set on
this subset and determining topology of this object,
since various ratios can exist for the object of the
same dimension, these relationships set different
topologies of this object. Let’s start with the concept
of problem. The mass problem means a common
issue that should be answered. The problem is
defined by the following information:
- General list of all of its parameters;
- Formulation of those properties to be satisfied by
the solution of the problem.

	 Individual problem is obtained from the
mass one, if specific values are assigned to all
parameters of the mass problem, but should be more
specific, and upon proving of NP-completeness this
fact is simply ignored. For example, upon proving
NP-completeness of the problem of Hamiltonian
cycle Karp [7] finds a very exotic graph structure
for which SAT-problem is satisfiable, if and only if
it has a Hamiltonian cycle. Then, there is an issue
whether this property will be performed for all
structures, and if such Boolean function cannot
be constructed for some topologies, on what basis
we should include these problems in the class of
NP-complete problems. If we take two graphs of
the same dimension, but different in topology, for
example one of them is perfect and the other is not,
then it is clear that the set of problems that we can
solve for the perfect graph does not coincide with
the set of problems solved on an imperfect graph.
But from the standpoint of Karp evidence it does
not matter.

	 Thus, Cook theorem is valid only for
objects described by satisfiable Boolean functions.
It should be borne in mind that the number of
such objects is negligible compared with objects
described by unsatisfiable Boolean functions [2,
3]. So we found that SAT-problem is not universal,

268 Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

and limits to applicability of Cook theorem are very
limited. Now let us show that the very proof of NP-
completeness of the problem requires clarification.
For this let’s consider the issue of the proof of NP-
completeness of arbitrary problem. As shown in
papers [2–7], polynomial reducibility of recognition
problem I1 to the recognition problem I2 means
availability of function f, which is based on some
rules Ïi represents a subset of problems Di1 in a
subset of problems Di2 (Di1® Di2), and thus satisfy
fulfillment of two conditions:
1. f is calculated by polynomial algorithm;
2. For all Ie Di IeYä1,when and only when f(I) e Yd2,

	 where Yd is set of problems with answer
“yes”, while Yde Di .

	 Let’s consider three subsets of problems
{Ii}; {Zi}; {Ci}. Let problem I-NP be complete and
represent a universal problem, and problems Z and
Ñ are also NP-complete, then in accordance with
the manner how class of NP-complete problems is
introduced, they should be polynomially reduced
one to another and, thus, if a polynomial algorithm
for one of them is found, there should exist
polynomial algorithms for all individual problems
{Ii}; {Zi} ;{Ci}. As any of NP-complete problems can
be a universal problem, all the following information
should be valid:
{Ii}→{Zi}→{Ci}; 	 ...(39)
{Ii}→{Ci}→{Zi}; 	 ...(40)
{Ci}→{Ii}→{Zi}; 	 ...(41)
{Ci}→{Ii}→{Zi}; 	 ...(42)
{Zi}→{Ci}→{Ii}; 	 ...(43)
{Zi}→{Ii}→{Ci}. 	 ...(44)

	 Thus, there are rules Liz and Lzc , allowing
to reduce problems Ip→ Zp and thus, {Id}L Ydi and
problems Zp→Cp and thus, {Zd} L Ydz, i.e. rules
of conversion of Liz and Lzc satisfy conditions of
polynomial reducibility 1 and 2. Let’s consider the
case when S structures are such that generate a
set of individual problems {Z}, which by power is
greater than the set of individual problems {I}. If
the subset {I} contains n individual problems, and
sets {Z} and {C} contain n+k individual problems
each then, for some subset of problems {Zn+1,

Zn+2,…,Zk} we could not assign any problem from {Ii}.
Consequently, reduction (39) and (40) is possible for
all problems and reductions (41), (42), (43) and (44)

are possible not for all problems, they are impossible
for problems {Ñn+1, Ñn+2,…,Ñk} and {Zn+1, Zn+2,…,Zk},
and, therefore, in this case, the statement that all
NP-complete problems are polynomially reduced
to each other is not satisfied. Thus, the concept
of NP-complete problem needs clarification. In
order to make NP-complete problem universal
and reducible in all directions inside the class, it
is necessary to have a perfect correspondence
between all individual problems {Ii};{Zi};{Ci}, i.e. for
any pair of individual problems there should be
direct and indirect polynomial reduction determined
by conditions 1 and 2.

	 So, if we have subsets of problems {Ii};
{Zi}; {Ci}, and power of set of individual problems {Ii}
is different from power of set of problems {Zi} and
{Ci}, then in order to prove that certain problem I
is NP-complete, it is not enough to show that any
individual problem {Ii} is polynomially reduced to
set of problems {Zi} and {Ci}, i.e. conditions 1 and
2 are fulfilled, as upon proving NP-completeness of
“satisfiability” problem in papers of Cook and Levin,
but in this case it is necessary to show that there
are problems {²n+1, ²n+2,…,²k}, polynomially reduced
to problems {Ñn+1, Ñn+2,…,Ñk} and {Zn+1, Zn+2,…,Zk},
and “checkability” of these problems of recognition
should be polynomial.

	 Papers [2, 3, 4] show that all problems
related to class NP-complete can be divided into
subsets of problems , inside of which polynomial
reducibility is possible and hypothesized that
between subsets apparently there only possible
polynomial reduction of certain individual problems.
Therefore, here we can talk only about polynomial
solvability of individual problems, which can be
reduced to a problem I. The only thing that unites
problems which we attribute to NP-complete is
the fact that no algorithm for solving polynomial
complexity is known for them. It is therefore
proposed to use for these tasks the term hardest
problems instead of the term NP-complete
problems. In paper [2] it is hypothesized that the
issue of the existence of the universal problem
is algorithmically unsolvable problem. As follows
from [8, 9, 10], this hypothesis is supported by
the fact that now the list of NP-complete problems
includes more than three thousand tasks, and thus
it includes almost all major problems of the theory

269Listrovoy & Sidorenko, Orient. J. Comp. Sci. & Technol., Vol. 8(3), 255-269 (2015)

of graphs, then proceeding of the declared Cook
polynomial reducibility of problems within that class,
for solving all problems of graph theory included
in this list there should exist an algorithm to solve
them with some arbitrarily high complexity, which
leads to their polynomial reducible to each other,
but this is contrary to results obtained in papers of
I. A. Lavrov (1963) [8] which shows the impossibility
of construction of such algorithm and to what A. A.
Zykov focused attention in papers [10].

Conclusions

1.	 The problem of relationship of classes
P and NP posed by Cook and ranked in the list
of millennium tasks is just ill-posed mathematical
problem; therefore, it is not surprising that nobody
could solve it. This problem should be excluded
from the list of millennium tasks, as to this date
scientists are spending their precious time to solve
it, it is evidenced by papers of Indian mathematician

Vinet Deolalikar and article of Ukrainian Professor
A. D. Plotnikov and Russian Professor A. V.
Panyukov. The presence of this problem in the list
of millennium tasks inhibits further development
of mathematics. It should also be noted that the
theory of NP-completeness cannot be used to
study properties of optimization problems [11], and
thus all results obtained in the theory of algorithms,
based on the “total” reducibility within the class of
NP-complete problems, declared by Cook, require
serious revision.
2.	 The paper shows that SAT problem
belongs to the class P, but that does not mean
equality of classes P and NP, but only determines
the possibility of solving during polynomial time
some subset of problems that are polynomially
reducible to SAT-problem and allows to create fast
SAT-solvers able to solve many problems of discrete
optimization of large dimension in real time, which
previously were considered unsolvable.

References

1.	 S. V. Listrovoy, Minukhin S. V. Investigation of
the Scheduler for Heterogeneous Distributed
Computing Systems based on Minimal Cover
Method // International Journal of Computer
Applications (0975 – 8887) 51(19): : 35–44
(2012).

2.	 Listrovoy S. V. On Correlation of Ð And
NP Classes // I. J. Modern Education and
Computer Science, 3: 21-27 (2012).

3.	 Listrovoy S. V. On NP classes and NP-
complete problems. // Electronic simulation,
33(1): p. 31–45 (2011).

4.	 Listrovoy S. V. “On polynomial reducibility in
NP class”, Ukrainian Mathematical Congress
“, Algebra and Number Theory. http://www.
imath.kiev.ua/ (2009)

5.	 Gary Ì., Johnson D. Computing machines
and hard problems. – Ì: Mir, 1982. – 336 p.

6.	 Cook S. À. Complexity of procedures of
a conclusion of theorems. - Cybernetic
collection of a new series, vol.12. - Moscow.:
Mir, -Ð.5 - 15 (1975).

7.	 Karp R. Ì. Reducibility of combinational

problems. - Cybernetic collection of a new
series, vol. 12. - Moscow: Mir, -Ð.16-38
(1975).

8.	 I. A. Lavrov. Effective inseparability of a
set of identically true and a set of finitely
refutable formulae of some elementary
theories. Algebra and logics (Materials of
the workshop of Institute of Computational
Mathematics and Mathematical Geophysics
of Siberian Branch of the USSR Academy
of Sciences) 2 (1963), No.1, 5-18. RzhMath,
1964, 1À112.

9.	 Papadimitriou, K. Steiglitz Combinatorial
optimization Algorithms and complexity– M.:
Mir, 1985.-509p.

10.	 A. A. Zykov. Elements of graph theory //
Moscow: Nauka, p. 381 (1987).

11.	 S. V. Listrovoy. On The Theory Of Np-
complete Problems // International Journal
of Computers & Technology, 11(4): Ð.
2481–2483 (2013).

12.	 SAT Live [Digital resource]. – Access mode:
www.satlive.org, free.

