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Abstract

	 We propose an exact polynomial-time algorithm for solving SAT the problem. 

Key words: SAT problem, polynomial reducibility.

Introduction

	 SAT-problem is important in systems of 
evidence automatic verification, where formula 
is a set of clauses, which mean disjunction of a 
certain amount of literals – variables Õ and Õ . This 
problem has a great importance upon determination 
of satisfiability of CIRCUIT-SAT schemes (circuit-
satisfiability problem) and in pattern recognition 
problems. The international annual conference 
(The International Conference on Theory and 
Applications of Satisfiability Testing) that has been 
held every year for more than ten years, as well 
as a (Journal on Satisfiability, Boolean Modeling 
and Computation) are devoted to this problem. 
An important place in the study of SAT-problem 

takes design of programs to address them; such 
programs are called SAT-solvers. Modern SAT-
solvers are able to quickly solve many problems 
that were considered not solved a few years ago. 
There are many exponential algorithms of its solving 
and heuristic approaches of polynomial complexity. 
Among them one should mention the Monien and 
Shpikermayer algorithm, 1985, in which a simple 
search is used for solving 3-SAT problem: alternate 
substitution of each variable with 1 or 0 is tried and 
then problem of a smaller size is recursively solved; 
it has temporal complexity Î(1,84n) and algorithm for 
problem of propositional satisfiability of formulas 
in conjunctive normal form with the complexity of 
Î(1,074n), obtained by Hirsch in 2000. In general, 
there are two main types of algorithms for solving 
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SAT problems: local search algorithms that start 
with a certain set of values (though, it does not 
satisfy all the formula), and then modify it trying 
to consistently get closer to performed set, and 
so-called DPLL-algorithms (by names of inventors: 
Davis, Putnam, Logemann, Loveland; description 
of basic principles of this method dates back to 
1968), which traverse a tree of all possible sets 
and perform depth-first search. The purpose of 
this paper is to develop efficient exact algorithm 
for solving 3-SAT-problem and an arbitrary k-SAT-
problem of polynomial complexity.

Formalization of SAT problem and its solution
	 Let’s consider Boolean function 
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	 Operations Ú, Ù are Boolean and simulate 
simple logic statements: Ú– “OR”; Ù– “AND”. For 
any binary set ),..,,( 21 nxxxõ =  the function 
takes one of two possible values: one or zero. The 
problem “satisfiability” is the answer to the question: 
whether there is a set of variables ),..,,( 21 nxxxõ =

, reversing function f into one.

	 As shown in [1] SAT problem can be 
considered as covering problem, for this let’s 
construct by Boolean function a Boolean matrix 
B in which columns correspond to variables 
( )nXÕÕ ,...,, 21  and ( )nXÕÕ ,...,, 21 ,  and rows 
correspond to disjunctions of the Boolean function. 
In general, the number of columns in matrix Â is 
equal to 2n, and the number of rows is equal to the 
number of disjunctions m in the Boolean function.

	 For example, for Boolean function

	 ...(1) 

	 Let’s numerate disjunctions of the Boolean 
function, see Table 1.                                

Numeration of disjunctions 

Table 1: 

Then, matrix B will have the form (2)
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	 Columns corresponding to the variables 

iX  è iX in the matrix will be called inverse. If 
in matrix B there is a covering of rows by units 
belonging to non-inverse column, it means that f 
function is satisfiable, if there is no such covering, 
it is unsatisfiable. Let’s denote variables by , then 
matrix Â, for the Boolean function (1), takes the 
form 
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B =                                     ,                                                               

	 ...(3)

Where if, then =0 and if , then =1    
	 As shown in [1], the problem of minimum 
coverage for any matrix B defined by some Boolean 
function 
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	 Can be considered as a problem of 
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finding a minimum set of variables {Xi = 1}, where 
the Boolean function (1) is satisfiable. That can be 
written in the following form

}1{min =ii
X

                     	 ...(5)

upon constraints

1)......(
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If we go to the dual Boolean function we’ll obtain

}0{min =ii
X

	
...(7)

                                                                                     

0............ =∨∨∨ hdqtrskbl XXXXXXXXX  
...(8)

	 From (7-8) it follows that the problem of 
the least coverage can be considered non-linear 
Boolean programming problem that means finding 
of the smallest number of variables  turning into zero 
the left side of the constraint (8). If we are talking 
about the existence of at least one covering, then 
it is necessary to find out whether there is at least 
one set of variables  turning into zero the left side 
of the constraint (8). For the matrix B, defined by 
correlation (3), condition for the existence of at least 
one covering will have the form

0............ =∨∨∨ hdqtrskbl ZZXXZXXZX
                                            ,                                         

...(9)
	 upon constraints

if 1=iX  , then 
iZ  =0 and

if 0=iX , then 
iZ  =1	 ...(10)

	 Thus, to establish the satisfiability of the 
Boolean function, we need to show the presence of 
at least one covering of rows by units in the matrix 
B, defining a given Boolean function, defined by 
correlation (3) that satisfies condition (10). For this, 
it is necessary to solve non-linear Boolean equation 
(9) and therewith, solution of this equation should 
satisfy condition (10). If we denote an arbitrary 

summand by , and the number of summands by 
m, then the problem (9-10) can be written as

∑
=

=
m

i
iS

1
0

	 ...(11)                                                                                  

	 upon constraints if 1=iX , then iZ =0 and 
if 0=iX ,then iZ =1	 ...(12)

	 In order to solve problems (11-12), 
variables of the Boolean function 

s
ix , taking 

values iX , and iZ  we’ll characterize by weight 
characteristics 

x
ih and 

z
ih  showing the frequency 

of appearance of variables  and  in summands of 
equation (11).

	 In solving the problem (11-12) for the 
conversion of some Boolean function we  in mean 
a change in the function  by substituting in it pairs, 
,= 0 or ,= 1, and since as a result of substitution 
or = 1 appeared clauses with fewer variables, We 
will produce the absorption type of operation. If the 
result of substituting in it pairs, ,= 0 or = 1, it follows 
that the equality, t.e. ravening (11) takes the form 1 
= 0, then we say that there was a contradiction and 
the function “not feasible” . If the conversion process 
appears clauses, consisting of one variable, these 
variables are assumed to be zero, and enter them 
in the decision.

	 The basic idea of   the solution of equation 
(11) is the choice of a clauses  in the original in the 
original Boolean function F, and is it possible to 
reset all the other terms in (11) due to the fact that 
we assume to be zero in turn variables belonging to 
the selected clauses in this form some intermediate 
functions in which, too, will allocate clauses and try 
to reset all the terms in these functions on the basis 
of a clause in the selection of one of these functions 
and setting variables in the selected clauses of turn 
zero. This process continues until we get the identity 
0=0 or , proceed to the contradiction 1= 0. In the first 
case of the function is feasible, and the second is 
not feasible. In general, the whole set of functions  
formed on the basis of one clauses  selected in the 
initial Boolean function F can be represented as a 
tree, see the following. Figure 1. 
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Fig.1. Tree forming Boolean functions Fr 

Clauses with 4 variables 

Clauses with 3 variables 

 

Clauses with 2 variables 

 

The number of 
vertices in the tree 

  r-level       

 r-уровне 

Fig. 1:  Tree forming Boolean functions Fr

Table 2: 

Table 3: 

	 In Figure 1.  shows a tree of all rF , who 
will have to build for the solution of «k-SAT» for k 
= 5. To construct the procedure of forming wood  
introduce the following notation: - clause in the

	  r- level in the tree; - the number of the 
variable in the clauses  on the r- level in the tree; - 
is a variable in a number of clauses. In view of the 
above notation, consider the following procedure 
A, the definition of the solution of (11) with the 
conditions (12) for the solution of «k-SAT» problem, 
i.e., the feasibility of a task in which each contain 
clauses on k-variables.

Procedure A
Step 1. Select the equation (11) a clause with a 
minimum number of variables and with the greatest 
total weight characteristics, choose a variable in it 
with the highest frequency  (this corresponds to the 
zero level r = 0) and move on to the next step.

Step 2. Assign a variable selected clauses  zero, 
and convert a Boolean function to function and 
proceed to the next step

Step 3. Check function, “not feasible” and whether 
there is a disjoint variables that are not considered 
to be zero (ie. check of the conversion process 
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Fig. 2: The block diagram of an 
implementation procedure A

does not result in a contradiction of the form) If yes, 
proceed to step 2, otherwise the next step.

Step 4: Check the function of “not feasible”, and 
whether there is a disjoint variables that were 

assumed to be zero (i.e. Check the conversion 
process functions  to  does not lead to a contradiction 
of the form) If yes, proceed to Step 2, otherwise the 
case in the next step.

Step 5: Check the function “feasible” or not (i.e. 
identity is performed 0=0 in equation (11)), and if 
so then the algorithm terminates because of the 
function is feasible, otherwise the next step.

Step 6: Check the function of “not feasible”, that is 
a contradiction of the form  when trying to function 
in zero if the function is turned to zero and thus 
no contradiction, then go to the next step if the 
controversy arose, that is, the function “not feasible”, 
then go to step 7.

Step 7: Go to the next level to find this clause 
with a minimum number of variables and with the 
greatest total weight characteristics, select it in the 
variablewith the highest frequencyin the Boolean 
functionand go to step2. 

Step 8: Checking were tested at zero (r = 0), all 
variables on the ability to reset clauses in equation 
(11), if yes, then the algorithm terminates, since the 
function “not feasible” otherwise the next step.
Step 8. Back to the previous (r-1) level branching 
and go to step 2.

	 The block diagram of this algorithm is 
presented in Fig.2. Let’s show that procedure 
A, oriented at solving of k-SAT problem, allows 
determination for polynomial time whether there is 
a set of variables in equation (11) allowing turning 
this equation into an identity upon fulfillment of 
condition (12). If in equation (11) we take arbitrary 
summand = , it is clear that in order to make =0 and 
fulfill condition (12) one of  k pairs of equalities =0 , 
=1; =0, =1; …=0, =1 should be fulfilled, i.e. in the set 
of variables of problem (11-12) solution there is one 
of these pairs and procedure A alternately checks 
which of these pairs belong to the solution. When 
we choose a clause in original Boolean function F 
procedure A does not analyze the entire original 
Boolean function F, and only that part of clauses 
which crosses the variables selected clauses. 
Sequences clauses of Boolean functions, which do 
not intersect the variables included in the clauses 
that make up the sequence, they will be referred to 
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Table 4: 

Table 5: 

independent sequences of clauses. It is clear that if 
a Boolean function is the number of variables is 2n, 
and the number of variables in each clause is k, the 
maximum number of such independent sequences 
cannot exceed the value, 

k
n2

i.e. in the worst based on the proposed 
procedure in the original Boolean function need to 
zero no more such sequences and therefore have to 
analyze no more trees. So appreciate the complexity 
of the analysis of one such tree. In accordance with 
the constructed tree, the number of functions  that 
will have to be converted equal to the total number 
of nodes at all levels of the analyzed tree.

	 As can be seen from Fig.1.the number of 
nodes at level zero will be equal to k at the first level 
is k(k-1) at the third level k(k-1)(k-2) and etc. And 
so, the number of nodes at level zero is equal to k , 
the second the number of  vertices does not exceed 
,will not exceed the third and the last level will not 
exceed  . Consider the amount of clear that it cannot 
exceed the value. For example, for the task “3-SAT” 
in the tree will have to be converted in the worst 
case k+ k(k-1)+ k(k-1)(k-2)=15 =3+3(3-1)+3(3-1)
(3-2)=15 functions. Given that the solution to “k-SAT” 
problem have to analyze  trees, in the worst case will 
have to convert  functions. In the case of a decision 
“3-SAT” problem, this number will not exceed the 
amount. For the analysis of the original equations 

and arbitrary Boolean functions in accordance 
with the proposed À procedure u need different 
operations. The number u is determined 2mn a 
comparison operation to determine the frequency 
of occurrence of each variable in the selected term 
and other terms plus  m’”k operations of addition 
to determine the total value weight  of each term in 
equation (11) and plus operations comparison of the 
maximum element in the array of m elements, i.e. . In 
the worst case at each step of the procedure A will 
be reset to zero only one summand i.e. in equation 
(11) after the first step will remain m-1 summand 
further m-2, m-3,...,1 summands ,i.e. zeroing all 
components of the procedures A in the worst case 
will require completion operations.

	 Thus, time complexity of work of the 
proposed procedure A does not exceed
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	 In the case of a decision “3-SAT” problem 
the number of elementary operations in the worst 
case may not exceed
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Table 6:                                      

Table 7: 
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2
log31(10( 223

n
mnmO +

+
                                               	 ...(14)

	 It is known that “k-SAT” problem can be 
reduced to “3-SAT” problem in polynomial time, in 
particular in [9] it is shown that if the clause contains 
more than three literals

kS ki ),...( 21 lll +++= >3	 ...(15)

	 it can be replaced  by ( k-2) clause

)(...)(
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13342

231121

kkk
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xxx

xxxS
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−−                   ,                      
...(16)

	 where  new variables, with this new set of 
clauses satisfied if and only if the following clause. 
Thus the transition from “k-SAT” problem to a 
“3-SAT” each clause “k-SAT” problem increases the 
number of variables in Boolean functions on (k-3), 
and the number of clauses are restricted to (k-2) 
clause, and therefore, when the number of variables 
and clause in a new task will be respectively equal 

mkmkmnn )2());3(( // −=−+= .

	 Substituting and as new values n and m 
in   (14) we obtain an estimate of difficulty with this 
approach to the solution of «k-SAT» task using the 
procedure A
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...(17)                     

	 Proposed procedure for solving «k-SAT» 
problem is formally polynomial algorithm but with a 
high degree of the polynomial (13) and consequently 
implemented in exponential time, with the solution 
of the «3-SAT» A procedure performs tasks in 
polynomial time. Thus, the transformation «k-SAT» 
problem in polynomial time in the «3-SAT» problem 
leads to an algorithm of polynomial complexity.

	 In solving «k-SAT» task using the 
procedure _ without reducing it to “3-SAT» problem 
we have exponential complexity of the algorithm and 
the choice at each step of the procedure A  disjuncts  
with the minimum number of variables and with the 
greatest total weight characteristics can significantly 
to reduce the average time of the algorithm, by 
resetting the maximum number of terms in each 
step of the procedure. Thus, the procedure A is a 
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Table 8: 

m = 500; k = 3
n	 100	 110	 120	 130	 140	 150
Number of elementary operations	 1.06·108	 7.2·108	 8.6·109	 4.2·108	 63,209	 52,096
	 0.2	 0.22	 0.24	 0.26	 0.28	 0.3
Satisfiability	 -	 -	 -	 +	 +	 +
Minimum time of solution – 5.06 ms				   Maximum time of solution – 793,934 ms

Table 9: 

m = 500; k = 3
n	 400	 800	 1200	 1600	 2000	 2400
Number of elementary operations	 286987	 106	 2.24·106	 4·106	 6.2·106	 8.9·106
	 1.25	 0.625	 0.416	 0.313	 0.25	 0.208
Satisfiability	 -	 -	 -	 +	 +	 +
Minimum time of solution - 36.5 ms				   Maximum time of solution - 849 ms

Table 10: 

m = 90; k = 3
m	 100	 200	 300	 400	 500	 600
Number of elementary operations	 16029	 26994	 37413	 4.39·107	 2.42·107	 1.86·107
	 0.90	 0.4	 0.3	 0.23	 0.18	 0.15
Satisfiability	 +	 +	 +	 +	 -	 -
Minimum time of solution - 2.15 ms				   Maximum time of solution - 38,910 ms

Table 11: 

m = 500; n = 90, ? = 18
k	 3	 10	 20	 30	 40	 50
Number of elementary operations	 2.42·107	 60,807	 48,555	 55,488	 64,268	 74,508
	 0.2	 0.22	 0.24	 0.26	 0.28	 0.3
Satisfiability	 -	 +	 +	 +	 +	 +
Minimum time of solution - 7.57 ms				   Maximum time of solution - 160 ms

complete listing of options, may be reset clauses 
in the case of feasibility reset function occurs in 
polynomial time, and in the case of “not feasible” 
function after attempts to reset either the first or the 
m clauses it turns out that it can not reset and still 
going strong screening the number of functions in 
the tree that must be analyzed and this leads to the 
fact that the average procedure A decides «k-SAT» 
problem in polynomial time.

	 Let’s consider examples of work of the 
procedure A, upon determination of satisfiability of 

Boolean functions. Let it be required to determine 
satisfiability of the following Boolean function 
with four variables and thirteen disjunctions while 
we assume that the + sign is a sign of logical 
addition.
f(x) = (x> 1+x> 0+x> 3)(x1+x0+x2)(x> 0+x> 3+x> 2)
(x> 3+x> 2+x1)(x1+x0+x3)(x> 1+x> 0+x2) (x> 3+x0+x2)
(x> 1+x> 2+x0)(x> 0+ x3+ x2)(x> 2+ x1+x0)(x> 0+x> 

3+x1)(x> 3+x1+x2)(x> 0+x> 2+x3)	             ...(18)

Let’s write initial equation
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Table 12: 

m = 10,000; k = 3
n	 100	 200	 300	 400	 500	 5,000
Number of elementary operations	 324,459	 1.25·106	 4.89·106	 9.5·107	 2.36·109	 6.1·107
	 0.2	 0.22	 0.24	 0.26	 0.28	 0.3
Satisfiability	 -	 -	 -	 +	 +	 +
Minimum time of solution - 44 ms				   Maximum time of solution - 819,261 ms

Table 13: 

Test 	 Number of 	 Number 	 Average 	 Average 	 Minimum 	 Maximum 
name	 variables	 of 	 number 	 time 	 time of 	 time of 
		  disjunctions	 of fulfilled 	 of 	 solution	 solution  
			   operations 	 solution 	 in ms	 in ms
			   upon 	 in ms
			   solution

CBS_k3_n100_m403_b0	 100	 403	 51·106	 4,578	 2.28	 77,843
………………………….
CBS_k3_n100_m403_b900

Z1Z0Z3 + x1x0x2 + Z0Z3Z2 + Z3 Z2x1 + x1x0x3 + 
Z1Z0x2+ Z3x0x2 + Z1Z2x0 + Z0x3x2 + Z2x1x0 + Z0Z3x1 + 
Z3x1x2 + Z0Z2x3=0;                                                                                                       	
				                ...(19)
	 We determine frequencies of appearance 
of variables in each summand, see table 2

	 Let’s choose summand with Z0Z3x1 
maximum value of sum of frequencies 

x
ih  equal 

to 6+6+5=17 and assume Z0=0; x0=1, thus initial 
equation (19) will take the following form

x1x2 + Z3 Z2x1 + x1x3 + Z3x2 + 
Z1Z2 + Z2x1 + Z3x1x2=0	 ...(20)

	 we perform absorption, here x1x2 absorb 
summand Z3x1x2, and summands Z2x1 and Z3x2 
absorb accordingly summands Z3 Z2x1 and Z3x1x2, 
thus equation (20) will take the following form

1=rF = x1x2 + x1x3 + Z3x2 + Z1Z2 + Z2x1 =0                                                          	
...(21)

	 Check the function is reversed to zero, 
i.e. “doable” or not. In this case, the function 
is not converted to zero, and in the process of 
transformation functions in contradictions have 
arisen, therefore, proceed on the next r+1 level.

	 Again we determine frequencies  of 
appearance of variables in each summand, see 
table 3.

	 Further, among summands containing the 
minimum number of variables, such summands 
are x1x2; x1x3; Z3x2; Z1Z2; Z2x1, we choose the 
summand with the highest weight characteristics ð. 
In accordance with Table 3, weight characteristics 
of these summands are, respectively, (4, 4, 2, 3, 5), 
so we choose the summand Z2x1. There variable 
with the greatest frequency equal to 3 is variable 
x1, so we assume x1=0; Z1=1. Thus, equation (21) 
will take the following form
         

2=rF =Z3x2 + Z2=0	 ...(22)

	 Absorption in (22) cannot be done, but 
there appeared the summand with one variable, 
therefore, we believe Z2=0; x2=1 and therefore, 
equation (22) will take the following form

Z3=0	 ...(23)

	 Thus, a set of variables Z0=0; x1=0; Z2=0; 
Z3=0 or x> 0  x1  x> 2  x> 3 draws equation (19) into the 
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identity and hence is a performing set of variables 
for the Boolean function (18). Let’s also consider the 
process of work of procedure A in the case when 
Boolean function is not satisfiable. Let function be 
set as follows
F(x)=(x0+x1+x> 2)(x> 3+x> 0+x2)(x0+x> 3+x2)(x1+x> 

2+x> 0)(x> 0+x> 1+x2)(x3+x1+x> 0)(x3+x0+x> 2) 
(x0+x> 2+ x> 1)(x3+x0+x2)(x3+x0+x1)(x3+x> 2+x> 0)
(x> 2+x> 3+x> 1)(x1+x> 2+x> 3)	            ...(24)

Let’s write initial equation

0=rF
=x0x1Z2+Z3Z0x2+x0Z3x2+x1Z2Z0+Z0Z1x2+x3x1Z0

+x3x0Z2+x0Z2Z1+x3x0x2+x3x0x1+x3Z2Z0+Z2Z3Z1+x1Z2

Z3=0	 ...(25)

	 Since we solve 3-SAT problem we have 
k = 3 and before the start of work of procedure 
A variable ñ=1. We determine frequency 

x
ih of 

appearance of variables in each summand (25), 
see table 4.                                                                                               

	 We choose summand with 
*
1S = x0x1Z2 with 

maximum value of sum of frequencies 
x
ih  equal to 

6+5+6=17, choose variable with maximum value 
of , this is x0 and assume; x0=0, Z0=1, thus initial 
equation (25) will take the following form

Z3x2+x1Z2+Z1x2+x3x1+x3Z2+Z2Z3Z1+x1Z2Z3=0                               	
...(26)

	 In (26) summand x1Z2 absorb summand 
x1Z2Z3 and equation (26) will take the following 
form

1=rF  =  Z3x2+x1Z2+Z1x2+x3x1+x3Z2+Z2Z3Z1=0                                            	
...(27)

	 The function 
1=rF  becomes zero, and 

when this controversy arose therefore determined 

the frequency x
ih  of occurrence of variables in each 

clause (27) see table 5.

	 In (26) summand with maximum total value 
of frequency is x1Z2 with total weight equal to 5 and 
x3Z2, there we choose variable Z2 with maximum 
weight 3. Further we assume Z2=0, x2=1, as a result 
(27) will take the following form

Z3+Z1+x3x1=0	 ...(28) 

	 As in (28) acquisitions cannot be held, and 
the terms containing one variable, we assume Z3=0, 
x3=1 and Z1=0, x1=1, and obtain 1=0 i.e. there is a 
contradiction, so return to the previous level 1=rF  
and move on to try to reset clause x1Z2 based on 
the variable x1, for in this we assume x1 =0, Z1=1 in 
(28) will receive                                            

2=rF  = Z3x2+ x2+x3Z2+Z2Z3=0	 ...(29)

	 In (29) x2 absorbs summand Z3x2 and 
we obtain the following equation

3=rF  = x2+x1Z2+Z2Z1+x1Z2=0	 ...(30)

	 As in (30) appeared, the terms containing 
one variable, we assume x2 =0,Z2=1 in (30) then 
we get x1+Z1=0, i.e., there was a contradiction, 
i.e. reset clause x1Z2 by variables x1 and Z2 without 
any contradiction is impossible, so back to zero 
and check whether all variables are checked for 
the possibility of exempting clause x0x1Z2 . In this 
case, not tested variables remained the variables 
x1 and Z2 and thus the variable Z2 has a greater 
frequency of occurrence in the clause than x1, so 
we assume Z2=0, x2=1 in this case equation (25) 
takes the form

1=rF = Z3Z0+x0Z3+Z0Z1+x3x1Z0+x3x0+x3x0x1=0	
...(31)

	 In (31) summand x3x0 absorb summand 
x3x0x1, and we obtain

2=rF =Z3Z0+x0Z3+Z0Z1+x3x1Z0+x3x0=0                                               	
...(32)

	 The function becomes zero, and when 
this controversy arose therefore determined the 
frequency of occurrence of variables in each clause 
(32) see table 6.

	 Among the terms with two variables, select 
the term with the maximum aggregate rate, this term 
is a term, this term Z3Z0 with a weight characteristic 
of 5, select it in the variable Z0 with the largest 
weight to 4 and assume x0 = 1 and Z0 = 0, at the 
same time (32 ) will have the following form

Z3+x3=0	 ...(33)
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	 i.e. there was a contradiction therefore 
return to the previous level to zero clause Z3Z0 
based variable Z3, for this purpose (32) believe x3 

= 1, Z3 = 0, we obtain

1=rF =Z0Z1+x1Z0+x0=0	 ...(34)

	 In (34) there was a term consisting of one 
variable, so assume x0 = 0 and Z0 = 1, and we obtain 
the Z1 + x1 = 0, i. e. there was a contradiction. Next, 
check whether all the variables at zero were used to 
clear the clause x0x1Z2. In this case, we are left with 
no proven only one variable x1, therefore believe x1 
= 0, Z1 = 1, the equation (25) becomes

1=rF  =Z3Z0x2+x0Z3x2+Z0x2+x3x0Z2+x0Z2+x3x0x2+x3

Z2Z0+Z2Z3=0	 ...(35)

	 After absorption by summand x0Z2 of 
summand Z3Z0x2 and x3x0Z2 we obtain

1=rF =x0Z3x2+Z0x2+x0Z2+x3x0x2+x3Z2Z0+Z2Z3=0                        	
...(36)

	 The function does not vanish, and thus no 
contradiction, therefore, determines the frequency 
of appearance of the variables in each of clauses 
(36) cm. Table 7.

	 Among the clauses in the two variables 
(36) Select clause to the maximum aggregate rate, 
this term is a term with a weight x0Z2 characteristic 
of 6, select it with the variable x0 frequency of 
occurrence in other clauses of (36) equal to 3 
and suppose x0 = 0 and Z0 = 1, and (36) takes the 
form
Z3x2+x2+x3Z2+Z2Z3=0	 ...(37)

	 In (37) x2 absorb Z3x2 and we obtain
x2+x3Z2+Z2Z3=0	 ...(38)

	 In (38) there was a term with one variable 
x2, so expect x2 = 0 and Z2 = 1 in this case we obtain 
x3 + Z3 = 0 i.e., a contradiction, so we return to the 
r-1 level i.e. go to the function defined by (36) and 
proceed to attempt to reset the clause  x0Z2 based 
variable Z2, for this purpose (36) believe Z2 = 0, 
x2 = 1, we get Z3Z0 + x0Z3 + Z0 + x3x0 = 0, having 
absorption get x0Z3 + Z0 + x3x0 = 0, where there 
was a term with one variable Z0, therefore believe 
Z0 = 0, x0 = 1 and obtain Z3 + x3 = 0 i.e., formed a 

contradiction therefore return to the r-1 level in the 
case of zero and check instill variables were used 
to clear the clause x0x1Z2 in this case it was the 
last variable, and hence the procedure terminates 
since assuming zero variables in clauses x0x1Z2 pay 
equation (25) into an identity and therefore can not 
function (24) is not feasible.

	 It should be noted that these estimates 
of time complexity of the procedure A, for the 
worst case, are pretty rough estimate from above 
because when it is obtained it was assumed that 
when assigning 0=lX  and lZ =1 at each step 
only one summand is reset to zero, but in fact 

x
lh  

summands are reset to zero and therefore it is of 
interest to obtain an estimate of the average work of 
the procedure A. In the experiment, 2n variables iX

and iZ  posted by disjunctions according to uniform 
distribution law. Results of experimental studies 
were obtained with a confidence probability of 
0.95, while for the average value of the number 
of elementary operations performed by procedure 
A at each point from 50 to 70 Boolean functions 
of studied dimension were generated. Upon 
experiment the number of disjunctions m ranged 
from 100 to 10,000, and the number of variables n 
changed from 90 to 2400, experimental results are 
shown in tables (8-12). Period of work of procedure 
À is given in milliseconds.                                                                                                               

	 Tables (8-12) show that the largest number 
of operations is made by the procedure at ratios

	 m
n

=a
 close to 0.24, while for a 

uniform law of distribution of variables iX
 and 

iX  by disjunctions at <0.24 Boolean functions 
are generally not satisfiable, and at> 0.24 Boolean 
functions become satisfiable. Sign (+) in tables 
means that functions are satisfiable, and sign (-) 
indicates non-satisfiability of Boolean functions. 
When á is close to 0.24 probability of occurrence 
of satisfiable and unsatisfiable Boolean functions 
becomes the same and thus the number of 
operations fulfilled by procedure A is increased. 
Thus, in case where Boolean function contained 
number of disjunctions m = 800 and number of 
variables n = 200, i.e. á = 0.25, the average number 
of solution was equal to 1,96 1011, at the upper value 
equal to 1,6’”1014, and the average time of solution 
was 4.9 hours. With increasing of k, see. Table 10, 
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where the summand 
n

mk
2
log2+  in (17) is 

significantly less than unity, there is a decrease of 
time complexity of the procedure’s work, due to the 
increased number of zeroed summands at each 
step of the procedure’s work. However, upon further 

increase of the summand 
n

mk
2
log2+ ,  

when it becomes significantly greater than unity, 
there is a further increase in the number of 
elementary operations fulfilled by procedure A. In 
order to test the developed algorithm we used 900 
test of specialized library SAT Live [12] containing 
403 disjunctions and 100 variables with the value of 
parameter á = 0.248 generated by pseudo-random 
filling of disjunctions. Test results are shown in 
Table 13

	 Algorithm testing was carried out on a 
computer ASER with Intel Pentium processor 
T4400, 2.2Ghz, 3GB Memory.

Summary
	 Since the issue of existence of an exact 
polynomial algorithm for solving SAT problem is 
closely connected with the issue of the relationship 
of classes P and NP, let’s consider it in more 
detail. 

	 Today, seven mathematical problems 
included in the list of millennium tasks are known, 
one of them is the problem of the relationship of 
classes P and NP. The issue of the relationship 
of classes P and NP is now considered one of the 
main open issues of modern mathematics and 
theoretical cybernetics. The founders of this problem 
are Stephen Arthur Cook, Professor from University 
of Toronto and a Turing Award winner, and Professor 
Leonid Levin. Cook’s works introduced the concept 
of NP-complete problems and proved that the 
problem of “satisfiability” also known as the SAT-
problem is universal NP-complete problem. Further 
development of the theory of NP-complete problems 
was made by a professor at Harvard University, 
Richard Manning Karp. In recent times, there 
have appeared papers of Indian mathematician, 
Vinet Deolalikar, and article “On the Relationship 
between Classes P and NP” written by the Ukrainian 

professor Anatoly D. Plotnikov in Journal of 
Computer Science 8 (7): 1036-1040, 2012. These 
papers prove the divergence of these classes. And 
the paper of Russian professor A. V. Panyukov 
proves that P = NP. Let’s show the incorrectness 
of these efforts of evidence on the basis of results 
already obtained by the authors in [1, 2, 3] and 
results obtained in papers of Lavrov and Zykov [7, 
8, 9], as papers [1, 2] show that SAT-problem is not 
universal. 

	 It should be noted that the class of NP-
complete problems is based on the concept of 
universal problem. All problems belonging to the 
class of NP-complete should be universal and 
polynomially reducible to each other. Therefore, if 
polynomial algorithm is received for solving some 
problem I belonging to the class of NP-complete, 
then in accordance with the Cook’s theorem 
[4] there should be polynomial solvability of all 
problems belonging to the class of NP-complete. 
In [4] Cook argues that the problem “satisfiability” 
is NP-complete. Once one NP-complete problem 
has become known, the process of proof of NP-
completeness of the problem A is simplified. In order 
to prove the NP-completeness of the problem ÀÎNP 
it is enough to show that any of known NP-complete 
problems À/ can be reduced to A, since the property 
of polynomial reducibility is transitive, i.e. if the 
problem A is converted to the problem B during the 
polynomial time, and if B is converted to C during the 
polynomial time, then A will be converted to C during 
the polynomial time. First this scheme was used 
to prove NP-completeness of six main problems: 
“three-dimensional combination”; “partition”; “vertex 
cover”, “Hamiltonian cycle; “clique”. Since these 
were the first problems introduced in the class of 
NP-complete problems after “satisfiability” problem, 
the proof of their NP-completeness was reduced 
to introduction of rule Ï, based on which using 
some arbitrary problem of “satisfiability” Yy∈
there was built structure S, with í property, if and 
only if ã possesses the value truly. For example, 
for the problem of “vertex cover” graph G was as 
the structure S, and í property laid in the fact that 
graph G has a vertex cover with the number of 
elements not more than K, if and only if the following 
set of disjunctions },...,,{ 21 mcññÑ = , defining 
an arbitrary individual “3-satisfiability” problem, is 
satisfiable. In general, the problem of “satisfiability” 
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is a set of Y individual problems defined in various 
ways of defining logic function. It should be noted 
that when proving NP-completeness of all six 
listed problems first there was selected an arbitrary 
individual task Yó∈  and it is used for construction 
during a polynominal time of graph G, having 
a structure interesting for us with necessary í 
property, only if the logic function corresponding 
to a given individual problem, possesses the value 
truly. Since graph G can be arbitrary, we solve some 
individual problem Zz ∈ , where Z-set of problems 
generated by using various types of graphs G. 

	 Upon solving any NP-complete problem 
of graph theory there is an inverse problem: an 
arbitrary graph G is given, and it is required to set 
whether this graph G has structure with v property 
or not. 

	 The fo l lowing issues ar ise: what 
individual task (y) from a set of individual problems 
“satisfiability” Y corresponds to the problem Zz∈  
generated by graph G, and whether there is inverse 
for all problems Z or not, and, if so, how it can be 
constructed according to the original graph and 
whether such construction is a polynomial or not?

	 It should be noted that Cook’s evidence of 
universality of problem “satisfiability” was present a 
priori and it was not clear whether there is at least 
one NP-complete problem or not. However, [2, 3, 4] 
show that “satisfiability” problem cannot claim to be 
a universal problem, i.e. NP-complete problem. As 
follows from [2, 3, 4] set of objects that are described 
by unsatisfiable Boolean functions in an exponential 
number of times are greater than the number of 
objects that are described by satisfiable Boolean 
functions, and properties of polynomial reducibility 
are by default extended to objects described by 
unsatisfiable Boolean functions. It was shown in 
[2, 3] in the vertex cover in graphs. According to [2, 
3] it is possible to construct an exponential set of 
graphs the set of disjunctions , defining an arbitrary 
individual problem, of which is unsatisfiable on 
any set of variables, and hence reduction of the 
problem of vertex cover to the SAT-problem for 
these graphs is impossible. It is easy to show that 
this fact happens for the problem of Hamiltonian 
cycle in graphs, as well as any other problem in the 

theory of graphs included in the list of NP-complete 
problems.

	 Initially, in the theory of NP-complete 
problems, there was laid an error associated with 
the fact that upon proving of NP-completeness the 
concept of individual problem does not take into 
account the topology of studied object. Description 
of any object is defined by some basic subset of 
elements describing this object and ratio  set on 
this subset and determining topology of this object, 
since various ratios  can exist for the object of the 
same dimension, these relationships set different 
topologies of this object. Let’s start with the concept 
of problem. The mass problem means a common 
issue that should be answered. The problem is 
defined by the following information: 
- General list of all of its parameters; 
- Formulation of those properties to be satisfied by 
the solution of the problem. 

	 Individual problem is obtained from the 
mass one, if specific values are assigned to all 
parameters of the mass problem, but should be more 
specific, and upon proving of NP-completeness this 
fact is simply ignored. For example, upon proving 
NP-completeness of the problem of Hamiltonian 
cycle Karp [7] finds a very exotic graph structure 
for which SAT-problem is satisfiable, if and only if 
it has a Hamiltonian cycle. Then, there is an issue 
whether this property will be performed for all 
structures, and if such Boolean function cannot 
be constructed for some topologies, on what basis 
we should include these problems in the class of 
NP-complete problems. If we take two graphs of 
the same dimension, but different in topology, for 
example one of them is perfect and the other is not, 
then it is clear that the set of problems that we can 
solve for the perfect graph does not coincide with 
the set of problems solved on an imperfect graph. 
But from the standpoint of Karp evidence it does 
not matter. 

	 Thus, Cook theorem is valid only for 
objects described by satisfiable Boolean functions. 
It should be borne in mind that the number of 
such objects is negligible compared with objects 
described by unsatisfiable Boolean functions [2, 
3]. So we found that SAT-problem is not universal, 
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and limits to applicability of Cook theorem are very 
limited. Now let us show that the very proof of NP-
completeness of the problem requires clarification. 
For this let’s consider the issue of the proof of NP-
completeness of arbitrary problem. As shown in 
papers [2–7], polynomial reducibility of recognition 
problem I1 to the recognition problem I2 means 
availability of function f, which is based on some 
rules Ïi represents a subset of problems Di1 in a 
subset of problems Di2 (Di1® Di2), and thus satisfy 
fulfillment of two conditions:
1. f is calculated by polynomial algorithm;
2. For all Ie Di IeYä1,when and only when f(I) e Yd2,

	 where Yd  is set of problems with answer 
“yes”, while Yde Di .

	 Let’s consider three subsets of problems 
{Ii}; {Zi}; {Ci}. Let problem I-NP be complete and 
represent a universal problem, and problems Z and 
Ñ are also NP-complete, then in accordance with 
the manner how class of NP-complete problems is 
introduced, they should be polynomially reduced 
one to another and, thus, if a polynomial algorithm 
for one of them is found, there should exist 
polynomial algorithms for all individual problems 
{Ii}; {Zi} ;{Ci}. As any of NP-complete problems can 
be a universal problem, all the following information 
should be valid: 
{Ii}→{Zi}→{Ci};    	 ...(39)
{Ii}→{Ci}→{Zi};     	 ...(40)
{Ci}→{Ii}→{Zi};    	 ...(41)
{Ci}→{Ii}→{Zi};    	 ...(42)
{Zi}→{Ci}→{Ii};     	 ...(43)
{Zi}→{Ii}→{Ci}.    	 ...(44)                                          

	 Thus, there are rules Liz and Lzc , allowing 
to reduce problems Ip→ Zp and thus, {Id}L Ydi and 
problems Zp→Cp and thus, {Zd} L Ydz, i.e. rules 
of conversion of Liz and Lzc satisfy conditions of 
polynomial reducibility 1 and 2. Let’s consider the 
case when S structures are such that generate a 
set of individual problems {Z}, which by power is 
greater than the set of individual problems {I}. If 
the subset {I} contains n individual problems, and 
sets {Z} and {C} contain n+k individual problems 
each then, for some subset of problems {Zn+1, 

Zn+2,…,Zk} we could not assign any problem from {Ii}. 
Consequently, reduction (39) and (40) is possible for 
all problems and reductions (41), (42), (43) and (44) 

are possible not for all problems, they are impossible 
for problems {Ñn+1, Ñn+2,…,Ñk} and {Zn+1, Zn+2,…,Zk}, 
and, therefore, in this case, the statement that all 
NP-complete problems are polynomially reduced 
to each other is not satisfied. Thus, the concept 
of NP-complete problem needs clarification. In 
order to make NP-complete problem universal 
and reducible in all directions inside the class, it 
is necessary to have a perfect correspondence 
between all individual problems {Ii};{Zi};{Ci}, i.e. for 
any pair of individual problems there should be 
direct and indirect polynomial reduction determined 
by conditions 1 and 2. 

	 So, if we have subsets of problems {Ii}; 
{Zi}; {Ci}, and power of set of individual problems {Ii} 
is different from power of set of problems {Zi} and 
{Ci}, then in order to prove that certain problem I 
is NP-complete, it is not enough to show that any 
individual problem {Ii} is polynomially reduced to 
set of problems {Zi} and {Ci}, i.e. conditions 1 and 
2 are fulfilled, as upon proving NP-completeness of 
“satisfiability” problem in papers of Cook and Levin, 
but in this case it is necessary to show that there 
are problems {²n+1, ²n+2,…,²k}, polynomially reduced 
to problems {Ñn+1, Ñn+2,…,Ñk} and {Zn+1, Zn+2,…,Zk}, 
and “checkability” of these problems of recognition 
should be polynomial.

	 Papers [2, 3, 4] show that all problems 
related to class NP-complete can be divided into 
subsets of problems , inside of which polynomial 
reducibility is possible and hypothesized that 
between subsets  apparently there only possible 
polynomial reduction of certain individual problems. 
Therefore, here we can talk only about polynomial 
solvability of individual problems, which can be 
reduced to a problem I. The only thing that unites 
problems which we attribute to NP-complete is 
the fact that no algorithm for solving polynomial 
complexity is known for them. It is therefore 
proposed to use for these tasks the term hardest 
problems instead of the term NP-complete 
problems. In paper [2] it is hypothesized that the 
issue of the existence of the universal problem 
is algorithmically unsolvable problem. As follows 
from [8, 9, 10], this hypothesis is supported by 
the fact that now the list of NP-complete problems 
includes more than three thousand tasks, and thus 
it includes almost all major problems of the theory 
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of graphs, then proceeding of the declared Cook 
polynomial reducibility of problems within that class, 
for solving all problems of graph theory included 
in this list there should exist an algorithm to solve 
them with some arbitrarily high complexity, which 
leads to their polynomial reducible to each other, 
but this is contrary to results obtained in papers of 
I. A. Lavrov (1963) [8] which shows the impossibility 
of construction of such algorithm and to what A. A. 
Zykov focused attention in papers [10]. 

Conclusions

1.	 The problem of relationship of classes 
P and NP posed by Cook and ranked in the list 
of millennium tasks is just ill-posed mathematical 
problem; therefore, it is not surprising that nobody 
could solve it. This problem should be excluded 
from the list of millennium tasks, as to this date 
scientists are spending their precious time to solve 
it, it is evidenced by papers of Indian mathematician 

Vinet Deolalikar and article of Ukrainian Professor 
A.  D. Plotnikov and Russian Professor A.  V. 
Panyukov. The presence of this problem in the list 
of millennium tasks inhibits further development 
of mathematics. It should also be noted that the 
theory of NP-completeness cannot be used to 
study properties of optimization problems [11], and 
thus all results obtained in the theory of algorithms, 
based on the “total” reducibility within the class of 
NP-complete problems, declared by Cook, require 
serious revision.
2.	 The paper shows that SAT problem 
belongs to the class P, but that does not mean 
equality of classes P and NP, but only determines 
the possibility of solving during polynomial time 
some subset of problems that are polynomially 
reducible to SAT-problem and allows to create fast 
SAT-solvers able to solve many problems of discrete 
optimization of large dimension in real time, which 
previously were considered unsolvable. 
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