
INTRODUCTION

Internet of Things (IOT) is a concept that
visualizes the vision for bringing the internet even
to dummy things [1]. It is attributed to review of the
Auto-ID Center infrastructure. In this architecture
the objects surrounding us would all be part of a
global infrastructure: the EPC (Electronic Product
Code) Network. As a key technology of this network,
Radio Frequency Identification (RFID) is arguably
the ideal solution for object identification. RFID is
one of the enabler technologies. It has successfully
been used in a large variety of applications already,
like enterprise supply chain management for
inventorying, tracking and of course objects
identification [2]. Though a RF reader, the EPC tag
in standard [3] can be collected and transmitted to
trace the good or assert.

Besides the EPC, which is the fundamental
component of an EPC Network, the Physical
Markup Language (PML) is also of great
importance. As defined in4 the “PML is a collection
of vocabularies used to represent information

Oriental Journal of Computer Science & Technology Vol. 4(1), 159-164 (2011)

A Compression Method for PML
Document based on Internet of Things

JAMAL MOHAMMAD AQIB

Research Scholars of Singhania University, 2/194 Vikas Nagar, Kursi Road,
Near Lekhraaj Panna Market, Lucknow - 226 022 (India).

(Received: April 25, 2011; Accepted: May 29, 2011)

ABSTRACT

In this paper we present a compression method for PML (Physical Markup Language) document
based on Huffman Algorithm. The algorithm and Java code pieces are presented. And the test result
shows the compression method has good compression ratio for the PML document. The Physical
Markup Language (PML) is designed to be a general, standard means for describing the physical
world including human and machines. How to save the PML document in internet server efficiently will
become more and more important.

Key words: Physical Markup Language; Internet of Things; Huffman Code; compression.

related to EPC network enabled objects”. The most
important of its vocabularies is certainly the PML
Core. Its objective is to provide a standardized
format for information interchange within an EPC
Network. It is used to model and encapsulate the
data captured by the Auto-ID sensors (i.e. RFID
readers or antennae), providing a generic markup-
language.

Messages based on the PML Core
schema can be exchanged between any two XML
(Extensible Markup Language) [11] enabled
systems in the EPC Network. Typically the
information exchange based on the PML Core
schema will occur between Savants [12] and the
EPC Information Service and/or other enterprise
applications4. How to save these PML data efficiently
in server database is an important issue. A typical
idea is to decrease the data/document size by
compression.

PML SERVER
Designing the PML server is the purpose

to store information of objects, batch orders and

160 AQIB, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 159-164 (2011)

manufacturing recipes and to make this information
available to an Auto-ID enabled robotic
manufacturing environment.

An example of PML services with EPC
information exchange during a supply chain is given
in Fig. 1:

Fig. 1: PML services on a supply chain9

The ONS means Object Name Service,
and it’s used to provide URLs to authoritative
information given an EPC, which works similarly to
the well known Domain Name Service (DNS). More
information about PML server development can be
found in [9] and [10].

PML DATA FORMAT
Before decompression, we need to

understand how the PML data is formatted. The
PML Core language is based on an XML syntax
validated by two XML-Schema:

PmlCore.xsd: which contains the Sensor
related elements.

Identifier.xsd: which provides a validation
schema for unique identifiers. It is worth noting that
the use of the EPC scheme as the identifier within
PML files is strongly encouraged but not mandatory.

Take PML Core for example, it defines a
set of elements used to report the sensors’

observations called the PML Core Sensor Data
Model. A sample of sensor element is shown as
below:

<pmlcore: Sensor>
<pmluid:ID>urn:epc:1:4.16.36</p
mluid:ID>
<pmlcore :Observation>
<pmlcore:DateTime>2011-02-

06T13 :04:34-06: 00</pmlcore
: DateTime>

<pmlcore : Tag>
<pmluid:ID>urn:epc:1:2.24.40
0</pmluid:ID> </pmlcore :
Tag>

<pmlcore : Tag>
<pmluid:ID>urn:epc:1:2.24.40
1</pmluid:ID> </pmlcore :
Tag>

</pmlcore :Observation>
</pmlcore: Sensor>

Such PML data, large or small, with its
associated schema, will be exchanged between

161AQIB, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 159-164 (2011)

various applications running on diverse devices.
Good storage methods will benefit the enterprise
and the clients a lot.

From the PML sample we can see that
the elements like “ID” and “Tag” appears for several
times, which can be called “redundancy” when
saving the data. They’re not necessary to be saved
every time when they appear. So we need a
compression method to deal with this situation.

Compression method
Lossy and Lossless Compression

There are two basic lossy data
compression [5] are:
1 Lossy compression means that some data

is lost when it is decompressed. Lossy
compression bases on the assumption that
the current data files save more information
than human beings can “perceive”. Thus the
irrelevant data can be removed.

2 Lossless compression means that when
the data is decompressed, the result is a bit-for-bit
perfect match with the original one. The name
lossless means “no data is lost”, the data is only
saved more efficiently in its compressed state, but
nothing of it is removed.

Obviously the Lossy compression is not
out cake because the PML data such as EPC tag
needs to be accurate to identify the object after
decompression. Among the lossless compression
techniques like LZW (Lempel-Ziv-Welch)
compression, Burrows-Wheeler transform and
Huffman code, we choose the Huffman code, which
uses variable length codes based on frequency.

Huffman Coding
Huffman coding is an entropy encoding

algorithm used for lossless data compression. It was
developed by David A. Huffman in 1952, based on
the frequency of occurrence of a data symbol. Its
main principle is to use fewer bits to represent
frequent symbols and use more bits to represent
infrequent symbols. It’s efficient when symbol
probabilities vary widely. Its aim is to find a prefix-
free binary code (a set of codeword) with minimum
expected codeword length (equivalently, a tree with
minimum weighted path length from the root), given
a set of symbols and their weights (usually

proportional to probabilities). It has a formalized
description:
Input is
A ^ a1 ,a2,...,an ‘ , which is the symbol set of size n.
Set
W ̂ w 1 , w 2,..., wn ‘ , which is the set of the (positive)
symbol weights (usually propor tional to
probabilities), where W i weight ai 1,. d i d n
Output is the code
C A, W ^ c1 , c 2 ,..., cn ‘ , which is the set of
(binary)

codeword, where ci is the codeword for ai
i dd1 . n Its goal is to let
n
LC¦ u w i lengthc

 i
i 1 be the weighted path length
of code C. Condition: L C d LT for any code T A,. W

Huffman Tree
The Huffman tree is a frequency-sorted

binary tree. The simplest construction algorithm
uses a priority queue where the node with lowest
probability is given highest priority.

Algorithm
Before doing the compression, we need

to parse the PML document, and code the elements
part in the document using Huffman code according
to the frequency of the elements. Fig.2 describes
the architecture of the compression method.

Fig. 2: Architecture of compression

The input and output of this mechanism
are all static files. The input is a standard PML
document. If to support the query after
compression, the output result need to keep the
parent and child relationship. When a PML
document is input, it is parsed by a PML parser.
The frequency information of the elements is

162 AQIB, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 159-164 (2011)

collected and the weight of each element is
calculated to build the Huffman tree. The codeword
are saved and the document can be compressed.

And when the document is decompressed,
the tree is used to decode. Since the Huffman tree
has the minimum weighted path length, the
codeword length is shortest, which will make a good
compression ratio.

The algorithm to build the Huffman tree is
1. Given n elements’ weight, build a initial binary

tree set T ^ t1 2 , t ,..., tn ‘ ti, every tree
member just has one root node with weight
, and its left and right child nodes are w i all
null;

2. Choose 2 trees out of T which have minimum
weight for the root node, and use them as
left and right nodes to construct a new tree.
The root node’s weight of this new tree should
be equal to the sum of the 2 trees’ root node
weight;

3. Remove the 2 trees in step 2 from the T set,
and add the new generated tree into T;

4. Repeat step 2 and 3, until there is only one
tree left, which is the final Huffman tree.

Code Realization
Before talking about the compression and

decompression code detail we can firstly make a
simple example. If we have an elements’ weight table
of a PML file as below,

4. Encrypt the input PML file data with Huffman
encoding. Code implementation in Java
langages:

//Class Huffman node: class Node {
public int weight; public char c;
public Node leftchild; public Node rightchild; public
Node parent; public String code;
public Node (String v, String str) {
weight = Integer.valueOf(v);
c = str.charAt(0); leftchild = null; rightchild = null;
parent = null;
code = “”;
}
}
//Build the Huffman tree:
private static ArrayList<Node> nodes = new
ArrayList<Node>();
Node root = new Node(“0”, “\0”); while (nodes.size()
- 1 > 0) {
if (nodes.size() == 1) {
root = nodes.get(0);
} else {
Node r = new Node(“0”, “\0”); Node x =
get

_min(nodes); Node y = get_min(nodes); root = r;
r.leftchild = x;
r.rightchild = y;
r.leftchild.parent = r; r.rightchild.parent = r; r.weight
= x.weight + y.weight; insert (nodes, r);
}
}
2) Decompression flow:
Decompression is also the process of decode, which
is to traverse the Huffman tree based on the code
to decode into the original data. The code sample
is as below:

Table 1: Elements weight table

PML Elements Weight

<pmluid:ID> 1
<pmlcore:Tag> 2
<pmlcore:Data> 4
<pmlcore:DateTime> 5

Compression flow
1. Collect the frequency/weight of PML

elements into a frequency table like a HASH
table;

2. Reads elements and their weight from the
table and creates the nodes;

3. Build the Huffman tree and traversing this
tree to create the codeword;

Fig. 3: Then the Huffman tree can be built

163AQIB, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 159-164 (2011)

//Decode using the Huffman tree:
public static void decode (Node root) { if (root.c !=
‘\0’) {
//write into data out stream } else {
if (get_first_bit() == ‘0’) { decode (root. leftchild); }
else {
decode (root.rightchild); }
}
}
Note: when creating the codeword to add prefix to
the nodes, we assign ‘0’ for left child and ‘1’ for right
child.

Verification Test
Since there’s no standard PML data set

for testing yet, so we edit by ourselves several
different sizes of PML files to test. The result shows
the compression ratio varies from 58% to 76%.
Although these test files just have simple structure
which cannot represent all the randomness of data,
it does show this compression method based on
Huffman coding is applicable.

Possible Improvement
Here we consider some possible

improvements for this compression scheme, which
can be the work direction of future work:

Query support after compression
To support the query of PML data after

the compression, we need a good PML parser to
parse the PML document well and save the
relationship of the elements and data. And when
explaining the query commands, the relationship

will be checked and the required information can
then be extracted out.

Compress the data part
Currently only the elements parts of PML

document are compressed, the data parts are
directly saved. We may consider other compression
algorithms like LZMA(Lempel-Ziv-Markov chain-
Algorithm)7, which is a dictionary compression
scheme somewhat similar to LZ77, to compress
the data part and make the whole compression ratio
higher.

Improve the Huffman code
There are some kinds of improved

Huffman coding, such as the algorithm in8, it uses
overflow of code and a heap sort algorithm, and it
accelerates the coding speed. It will be good when
saving large number of files.

CONCLUSION

In future communication networks, the
communicate forms will expand from current
human-human to human-human, human-thing and
thing-thing (also called M2M). And the PML which
describe the objects in this network will be more
and more important. In this paper we propose a
compression method for the PML document storage
in the Server database. The experimental result
shows the compression performance is good. And
this mechanism can be applied in future EPC
network and the Internet of Things.

1. M. P. Michael and M. Darianian, “Architectural
Solutions for Mobile RFID Services for the
Internet of Things,” services, pp.71-74, 2008
IEEE Congress on Services - Part I (2008).

2. V. Kolias, I. Giannoukos, C. Anagnostopoulos,
I. Anagnostopoulos, “Integrating RFID on
event-based hemispheric imaging for internet
of things assistive applications,” In PETRA
2010 ACM International Conference
Proceeding Series, 2707-2714 (2010).

3. EPCglobal, “EPC Tag Data Standards
Version 1.1 Rev.1.24,” Technical report,

REFERENCES

EPCglobal (2004).
4. C Floerkemeier, D. Anarkat, T. Osinski and

M. Harrison, “PML Core Specification 1.0,”
Technical report, Auto-ID Center, 2003.

5. M. Sharma, “Compression Using Huffman
Coding,” IJCSNS International Journal of
Computer Science and Network Security, vol.
10, May. 2010 pp. 133-141 .

6. C L. Brock, “The Physical Markup Language,”
Auto-ID White Paper, WH-003, Feb. 2001.
h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
Lempel%E2%80%93Ziv%E2%80%93M

164 AQIB, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 159-164 (2011)

arkov_chain_algorithm
7. F. L. Zhang, S. F. Liu, “Huffman*: improved

huffman data compression
algorithm.Computer Engineering and
Applications,” 2007, 43(2): pp. 73-74.

8. M. Harr ison, H. Moran, J. Brusey, D.
McFarlane, “PML Server Developments,”
Auto-ID White Paper, WH-015, (2003).

9. M. Harrison, D. McFarlane, “Development of
a Prototype PML Server for an Auto-ID
Enabled Robotic Manufactur ing
Environment”, Auto-ID White Paper, WH-010,
(2003). http://en.wikipedia.org/wiki/XML

10. S. Clark, K. Traub, D. Anarkat, T. Osinski,
“Auto-ID Savant Specification 1.0 Version of
1”, (2003).

